The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex.

نویسندگان

  • E Boudreau
  • Y Takahashi
  • C Lemieux
  • M Turmel
  • J D Rochaix
چکیده

The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C. reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-transcriptional steps involved in the assembly of photosystem I in Chlamydomonas.

Assembly of the PSI (photosystem I) complex in eukaryotic photosynthetic organisms depends on the concerted interactions of the nuclear and chloroplast genetic systems. We have identified several nucleus-encoded factors of Chlamydomonas reinhardtii that are specifically required for the synthesis of the two large chloroplast-encoded reaction-centre polypeptides, PsaA and PsaB, of photosystem I ...

متن کامل

The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants.

Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxilia...

متن کامل

Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii.

Ycf4 is a thylakoid protein essential for the accumulation of photosystem I (PSI) in Chlamydomonas reinhardtii. Here, a tandem affinity purification tagged Ycf4 was used to purify a stable Ycf4-containing complex of >1500 kD. This complex also contained the opsin-related COP2 and the PSI subunits PsaA, PsaB, PsaC, PsaD, PsaE, and PsaF, as identified by mass spectrometry (liquid chromatography-t...

متن کامل

Analysis of factors involved in plastid gene expression in the unicellular green alga Chlamydomonas reinhardtii

Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor Nac2 and the translational activator RBP40 23 3.2 Enrichment of native, high molecular weight ribonucleoprotein complexes from chloroplast by consecutive gel filtration steps 37 3.3 An intermolecular disulfide-based light switch for chloroplast ps...

متن کامل

Targeted Inactivation of a Tobacco Intron–containing Open Reading Frame Reveals a Novel Chloroplast-encoded Photosystem I–related Gene

The chloroplast genome of all higher plants encodes, in its large single-copy region, a conserved open reading frame of unknown function (ycf3), which is split by two group II introns and undergoes RNA editing in monocotyledonous plants. To elucidate the function of ycf3 we have deleted the reading frame from the tobacco plastid genome by biolistic transformation. We show here that homoplasmic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 20  شماره 

صفحات  -

تاریخ انتشار 1997